Schema Evolution in Research Data

Tanja Auge

University of Regensburg, Germany

11th March 2024

Introduction

A quick internet search:

- schema evolution in databases
- research data management
- replicability and reproducibility
- FAIR principles and various additional guidelines (e.g. from the NFDI, DFG, RDA, ...)

Introduction

A quick internet search:

- schema evolution in databases
- research data management
- replicability and reproducibility
- FAIR principles and various additional guidelines (e.g. from the NFDI, DFG, RDA, ...)

My background:

- Postdoc at the Chair of Data Engineering, University of Regensburg
- PhD topic: provenance management using schema mappings with annotations
- Research topics: provenance, research data management, schema evolution

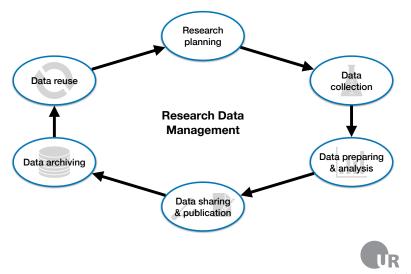
Research data¹ is an essential foundation for scientific work. [...] Research data might include *measurement data*, *laboratory values*, *audiovisual information*, *texts*, *survey data*, *objects from collections*, or *samples* that were created, developed or evaluated during scientific work.

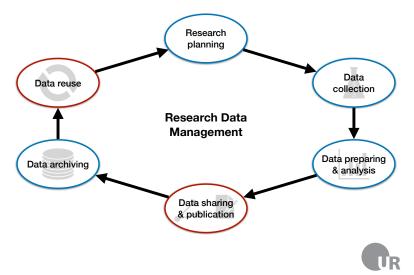
Universität Regensburg

¹https://www.dfg.de ²https://www.go-fair.org

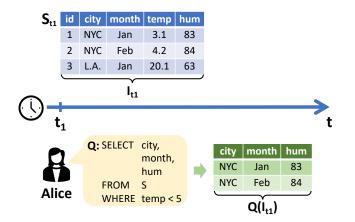
Auge

Research data¹ is an essential foundation for scientific work. [...] Research data might include *measurement data*, *laboratory values*, *audiovisual information*, *texts*, *survey data*, *objects from collections*, or *samples* that were created, developed or evaluated during scientific work.


The **FAIR Principles**² provide guidelines to improve the **F***indability*, **A***ccessibility*, **I***nteroperability*, and **R***euse* of digital assets.


Universität Regensburg

¹https://www.dfg.de ²https://www.go-fair.org


Research Data Lifecycle

Research Data Lifecycle

A sample Evaluation

Challenges, Conditions and Goals

Challenges:

- schema changes and data updates over time
- ensuring reproducibility of data and query results (according to FAIR)

Challenges, Conditions and Goals

Challenges:

- schema changes and data updates over time
- ensuring reproducibility of data and query results (according to FAIR)

Conditions in the context of research data:

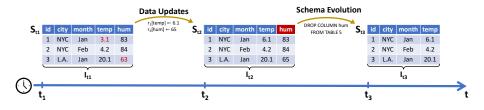
- updating data means adding a new modified data record
- even in long-term studies, schema changes are rare
- privacy aspects in data and data handling

Challenges, Conditions and Goals

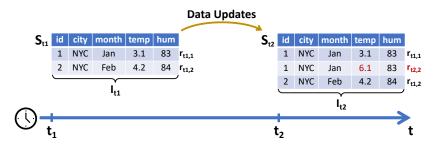
Challenges:

- schema changes and data updates over time
- ensuring reproducibility of data and query results (according to FAIR)

Conditions in the context of research data:


- updating data means adding a new modified data record
- even in long-term studies, schema changes are rare
- privacy aspects in data and data handling

Goals:


- improve the reproducibility of previous query results
- predict information loss

A sample Evolution

Schema evolution⁸ describes the *ability for a database schema to evolve* without the loss of existing information.

⁴H. J. Moon, C. Curino, A. Deutsch, C.-Y. Hou, C. Zaniolo: Managing and querying transaction-time databases under schema evolution. Proc. VLDB Endow. 1(1), 2008

⁸ J. F. Roddick: A survey of schema versioning issues for database systems. Inf. Softw. Technol. 37(7), 1995

Schema evolution⁸ describes the *ability for a database schema to evolve* without the loss of existing information.

Schema Modification Operators (SMO)⁹ are *representations of the mappings* between successive schema versions.

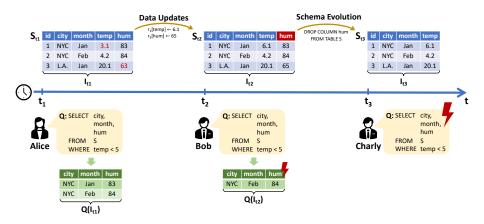
⁴H. J. Moon, C. Curino, A. Deutsch, C.-Y. Hou, C. Zaniolo: Managing and querying transaction-time databases under schema evolution. *Proc. VLDB Endow.* 1(1), 2008

⁵ J. F. Roddick: A survey of schema versioning issues for database systems. Inf. Softw. Technol. 37(7), 1995

Most common Schema Changes

	(a)	(b ₁)	(b ₂)	(c)	
CREATE Table	2.3%	20.4%	29.1%	8.9%	-
DROP Table	0%	31.5%	23.6%	3.3%	(a) research
MERGE Table	_	_	-	1.5%	database ³
ADD Column	79.5%	25.9%	25.5%	38.7%	(b) open source
DROP Column	0%	18.5%	18.2%	26.4%	programs ^{4,5}
RENAME Column	2.3%	_	_	16.0%	(c) Wikipedia ⁶
MERGE Column	9.2%	-	-	-	
SPLIT Column	6.8%	-	-	-	

³T. Auge, E. Manthey, S. Jürgensmann, S. Feistel, A. Heuer: Schema evolution and reproducibility of long-term hydrographic data sets at the IOW. *LWDA*, 2020



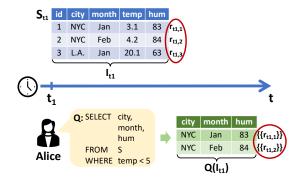
⁴S. Wu, I. Neamtiu: Schema evolution analysis for embedded databases. *ICDE Workshops*, 2011

^bD. Braininger, W. Mauerer, S. Scherzinger: Replicability and Reproducibility of a Schema Evolution Study in Embedded Databases. *ER (Workshops)*, 2020

⁶C. Curino, H. J. Moon, L. Tanca, C. Zaniolo: Schema evolution in wikipedia. *ICEIS(1)*, 2008

A sample Evolution without Reproducibility

Provenance⁶ generally refers to any information that describes the *production process of an end product*, which can be anything from a piece of data to a physical object.


M. Herschel, R. Diestelkämper, H. Ben Lahmar: A survey on provenance: What for? What form? What from? VLDB J. 26(6), 2017 **Provenance**⁶ generally refers to any information that describes the *production process of an end product*, which can be anything from a piece of data to a physical object.

Data provenance⁶ allows to track the *processing of individual data items* at the level of individual data items (and the operations they undergo).

M. Herschel, R. Diestelkämper, H. Ben Lahmar: A survey on provenance: What for? What form? What from? VLDB J. 26(6), 2017

A sample for a reproducible Evaluation

Our conceptual Approach

Conceptual Idea:

- combine query evaluation, schema evolution and provenance information with one technique
- provenance information: data provenance and side tables

Conceptual Idea:

- combine query evaluation, schema evolution and provenance information with one technique
- provenance information: data provenance and side tables

Goals:

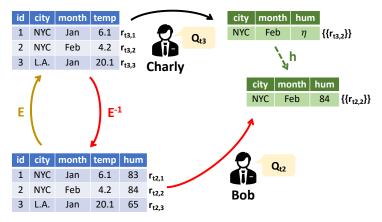
- support plausibility checks
- verify reproducibility and replicability

Our conceptual Approach

Conceptual Idea:

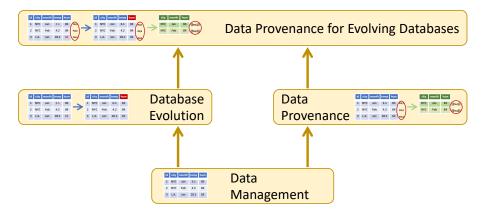
- combine query evaluation, schema evolution and provenance information with one technique
- provenance information: data provenance and side tables

Goals:


- support plausibility checks
- verify reproducibility and replicability

Furhter Steps:

- include data updates by extended time stamps
- extend the supported evaluation language



A sample for a reproducible Evaluation including Schema Evolution

Schema Evolution in Research Data

