
1. Introduction

The following is a basic introduction to modern optimality proofs of adaptive mesh re-
finement algorithms. The material is a simplified version of [CFPP14]. For recent devel-
opments in the field concerning non-symmetric, indefinite, and time-dependent problems,
see [Fei19, Fei22].

2. Abstract Analysis

2.1. Mesh refinement. Throughout this section, we assume that we have a fixed mesh-
refinement strategy, e.g., newest-vertex bisection. Then, given an initial mesh T0, this
allows to consider the set of possible meshes

T := {T is a refinement of T0}.

With |T |, we denote the number of elements of T . Note that T is an infinite but still
countable set, since

T =
⋃

n∈N

{
T ∈ T : |T | ≤ n

}

is the countable union of finite sets.

Example 1. In one dimension, we consider T0 = {[0, 1]}. If we choose bisection as a
refinement strategy ([0, 1] 7→ {[0, 1/2], [1/2, 1]}), the set of all possible meshes T consists
of all meshes T with elements T = [aT , bT ] ∈ T which have endpoints of the form aT , bT ∈{
j2−k : k ∈ N, j ∈ {0, . . . , 2k}

}
,.

Assumption 1. We make the following assumptions on our refinement rule:

• For all refinements T̂ ∈ T of T ∈ T holds

|T̂ \ T | ≤ |T̂ | − |T |, (1a)

i.e. each refined element is refined into at least two sons. Moreover T̂ = refine(T , M)
for some M ⊆ T , there holds

|T̂ | ≤ Csons|T |, (1b)

i.e. each refined element is split into at most Csons > 0 elements.
• For given meshes T , T ′ ∈ T exists a common refinement T ⊕ T ′ ∈ T such that

the so-called overlay estimate holds

|T ⊕ T ′| ≤ |T | + |T ′| − |T0|. (2)

• Each sequence Tℓ ∈ T of meshes generated by successive mesh-refinement, i.e. Tj =
refine(Tj−1, Mj−1) for all j = 1, . . . , ℓ and arbitrary Mj ⊆ Tj , j = 0, . . . , ℓ − 1,
satisfies

|Tℓ| − |T0| ≤ Cmesh

ℓ−1∑

k=0

|Mk| for all ℓ ∈ N. (3)

This means that, up to a multiplicative constant, only the marked elements are
refined and the “mesh closure” is negligible. (Note that e.g. newest-vertex bisection
avoids hanging nodes by additional bisections, i.e. one refines more elements than
only the marked elements)
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Remark. The overlay estimate (2) has first been observed for newest-vertex bisection
by [Ste07] in 2D and was generalized to Rd by [CKNS08]. The mesh-closure estimate (3)
has first been observed by [BDD04] in 2D and was generalized by [Ste08] to Rd. Both
works require an assumption on T0 which is removed for 2D in [KPP12]. �

Example 2. An estimate of the type |Tℓ|−|Tℓ−1| ≤ C|Mℓ−1| with ℓ-independent constant
C > 0 cannot be expected.

Example in 1D: Here, the analogue to avoiding hanging nodes is that the quotient
of the diameter of neighbouring elements stays bounded, e.g. by factor two

max
{
diam(T )/diam(T ′) : T, T ′ ∈ T , T ∩ T ′ 6= ∅

}
≤ 2. (4)

Now consider the situation in the figure below. We start with T0 = {[0, 1]} and iteratively
mark the leftmost elements (green). After 4 steps, this generates the mesh T4. Note
that the boundedness (4) holds, since each element is half the size of its right neighbour.
Next, we mark the second element from the left in T4. To ensure the boundedness (4),
each element which is located right of the marked element has to be refined. In this case,
the marking of one element forces 4 elements to be refined. Obviously, this example can
be extended to any ℓ ∈ N and thus shows that there are configurations for which holds
|Tℓ| − |Tℓ−1| ≥ (ℓ − 1)|Mℓ−1|.
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Example in 2D: Consider the situation below, where we iteratively mark the rightmost
elements (green). The current labelling of the edges is indicated in blue. After 4 steps of
refinement, we end up with T4. Now, we mark the second element from the right. Since
the labelled edges are halved, each element which is located left of the marked element has
to be refined to avoid hanging nodes. The refinement of one marked element generates 12
new elements.
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Remark. The proof of the closure estimate is non-trivial, although it looks quite simple
and natural. As a byproduct, the proof states that our “counterexamples” are artificial
and can only occur finitely often. For newest-vertex bisection, a proof of the three prop-
erties (1)–(3) will be given later. �

Remark. Essentially, newest-vertex bisection is the only refinement strategy which
satisfies the assumptions (1)–(3). Red-Green-Blue refinement fails to satisfy the overlay
estimate (2) [Pav10], but satisfies the closure estimate (3). �

2.2. Functional setting. Let X be a normed space and u ∈ X the unknown solution
which we aim to approximate. For T ∈ T, let XT denote a discrete (finite dimensional)
subspace of X with computable discrete solution UT ∈ XT .

Remark. The goal of this section is to analyze the convergence of the adaptive algorithm
in a completely abstract way. To that end, we do not want to consider a particular model
problem or to make assumptions on how the approximations are computed. All we need
to know is that there is an exact solution u ∈ X and there exist some computable (no
matter where they come from) approximations UT . �

Assumption 2. For all T ∈ T and for all ε > 0 exists a refinement T̂ ∈ T of T such
that

‖u − U
T̂

‖X ≤ ε,

i.e. uniform mesh-refinement will always lead to convergence.

We start with some facts:

(1) The precise problem formulation is not needed throughout the abstract analysis.
(2) Assumptions on X and XT can be much weakened to less than quasi-metric spaces

and non-conformity XT 6⊆ X and non-nestedness XT 6⊆ X
T̂

for refinements T̂ ∈ T

of T ∈ T.
(3) Assumption 2 is necessary, since otherwise one cannot expect that any adaptive

algorithm (or mesh-refinement) will prove successful resp. convergent at all.
(4) In practice, Assumption 2 is proved by use of the Céa lemma and the approxima-

tion properties of the discrete spaces XT , e.g. suppose that XT ⊂ H1(Ω) consists
of T -piecewise polynomials. Then, there holds for all v ∈ H2(Ω)

inf
V ∈XT

‖v − V ‖H1(Ω) . h‖D2v‖L2(Ω),

where h > 0 is the maximal mesh-size of T . With this, given ε > 0 and the exact
solution u ∈ H1(Ω), we choose v ∈ H2(Ω) with ‖u − v‖H1(Ω) < ε and prove by
use of the Céa lemma

‖u − UT ‖H1(Ω) . inf
V ∈XT

‖u − V ‖H1(Ω)

≤ inf
V ∈XT

‖v − V ‖H1(Ω) + ε

. h‖D2v‖L2(Ω) + ε.

Choosing ε, h > 0 sufficiently small, we prove convergence of UT to u as h → 0.
Note that this technique does not provide any convergence rates.

Before we proceed, we have to agree on some notation for the error estimator. Note
that the structure or type of the estimator is not important. All we need to know is that
the estimator η(·) consists of elementwise contributions

ηT (T, V ) ≥ 0 for all T ∈ T and all V ∈ XT ,
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for which we write

ηT (T ) := ηT (T, UT ) for all T ∈ T

if the discrete solution is used as input. Moreover, the global estimator reads

ηT (V ) :=
( ∑

T ∈T

ηT (T, V )2
)1/2

for all T ∈ T and all V ∈ XT ,

and again we write

ηT := ηT (UT ) for all T ∈ T.

For meshes Tℓ generated by the adaptive algorithm, we use the abbreviate notation ηℓ(·) =
ηTℓ

(·) and Uℓ = UTℓ
for the associated quantities.

2.3. First assumptions on estimator. The following assumptions are used throughout
the lecture:

(A1) Stability on non-refined elements: There exists Cstab > 0 such that for re-

finements T̂ ∈ T of T ∈ T and all subsets of non-refined elements S ⊆ T ∩ T̂
there holds

∣∣∣∣
( ∑

T ∈S

η
T̂

(T, V̂ )2
)1/2

−
( ∑

T ∈S

ηT (T, V )2
)1/2∣∣∣∣ ≤ Cstab‖V̂ − V ‖X

for all V ∈ XT and all V̂ ∈ X
T̂

.
(A2) Reduction on refined elements: There exists Cred > 0 and 0 < qred < 1 such

that for all refinements T̂ ∈ T of T ∈ T there holds
∑

T ∈T̂ \T

η
T̂

(T )2 ≤ qred

∑

T ∈T \T̂

ηT (T )2 + Cred‖U
T̂

− UT ‖2
X .

(A3) General quasi-orthogonality: For all ε > 0 exists Corth(ε) > 0 such that the
adaptive algorithm guarantees

N∑

k=ℓ

(
‖Uk+1 − Uk‖2

X − ε‖u − Uk‖2
X

)
≤ Corth(ε)η2

ℓ

for all ℓ, N ∈ N with N ≥ ℓ. (Recall the abbreviations Uk = UTk
and ηℓ = ηTℓ

)
(A4) Reliability: There exists Crel > 0 such that for all T ∈ T there holds

‖u − UT ‖X ≤ CrelηT .

Remark. Assume nestedness Xk ⊆ Xk+1 for all k ∈ N0. If a(·, ·) is the scalar product
on X with induced norm ‖v‖2

X = a(v, v), the Galerkin-orthogonality a(u − Uk+1, V ) = 0
for all V ∈ Xk+1, implies the Pythagoras theorem

‖u − Uk+1‖2
X + ‖Uk+1 − Uk‖2

X = ‖u − Uk‖2
X .

This gives

N∑

k=ℓ

‖Uk+1 − Uk‖2
X =

N∑

k=ℓ

(
‖u − Uk‖2

X − ‖u − Uk+1‖2
X

)
≤ ‖u − Uℓ‖2

X ≤ C2
relη

2
ℓ

i.e. general quasi-orthogonality (A3) with Corth = C2
rel and ε = 0. �
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2.4. Linear convergence of adaptive Algorithm. The following theorem is the main
result of this subsection.

Theorem 3 (R-linear convergence). Under the assumptions (A1)–(A4), there exist con-
stants 0 < qconv < 1 and Cconv > 0 such that

η2
ℓ+k ≤ Cconvqk

convη2
ℓ for all ℓ, k ∈ N, (5)

i.e. R-linear convergence of the estimator to zero.

Before we come to the proof, we need some preparation.

Lemma 4 (Estimator reduction). The axioms stability (A1) and reduction (A2) imply
the existence of Cest > 0 and 0 < qest < 1 such that

η2
ℓ+1 ≤ qestη

2
ℓ + Cest‖Uℓ+1 − Uℓ‖2

X for all ℓ ∈ N. (6)

Proof. First, we recall the Young inequality: We start with 2ab ≤ a2 + b2 for all a, b ∈ R.
For all δ > 0, we obtain immediately

2ab = 2
√

δa
b√
δ

≤ δa2 + δ−1b2,

and hence

(a + b)2 = a2 + 2ab + b2 ≤ (1 + δ)a2 + (1 + δ−1)b2. (7)

Second, the estimator is split into two parts

η2
ℓ+1 =

∑

Tℓ+1\Tℓ

ηℓ+1(T )2 +
∑

T ∈Tℓ+1∩Tℓ

ηℓ+1(T )2. (8)

For the first sum, we use reduction (A2) and obtain
∑

Tℓ+1\Tℓ

ηℓ+1(T )2 ≤ qred

∑

Tℓ\Tℓ+1

ηℓ(T )2 + Cred‖Uℓ+1 − Uℓ‖2
X .

For the second sum in (8), we employ stability (A1) and the Young inequality with δ > 0
to obtain

∑

T ∈Tℓ+1∩Tℓ

ηℓ+1(T )2 ≤
(( ∑

T ∈Tℓ+1∩Tℓ

ηℓ(T )2
)1/2

+ Cstab‖Uℓ+1 − Uℓ‖X

)2

≤ (1 + δ)
∑

T ∈Tℓ+1∩Tℓ

ηℓ(T )2 + (1 + δ−1)C2
stab‖Uℓ+1 − Uℓ‖2

X .

Plugging the last two estimates into (8), we end up with

η2
ℓ+1 ≤ qred

∑

T ∈Tℓ\Tℓ+1

ηℓ(T )2 + (1 + δ)
∑

T ∈Tℓ+1∩Tℓ

ηℓ(T )2 + ((1 + δ−1)C2
stab + Cred)‖Uℓ+1 − Uℓ‖2

X .

With
∑

T ∈Tℓ+1∩Tℓ
ηℓ(T )2 = η2

ℓ − ∑
T ∈Tℓ\Tℓ+1

ηℓ(T )2 and Cest := (1 + δ−1)C2
stab + Cred, we

proceed as

ηℓ+1 ≤ (1 + δ)η2
ℓ + (qred − (1 + δ))

∑

T ∈Tℓ\Tℓ+1

ηℓ(T )2 + Cest‖Uℓ+1 − Uℓ‖2
X

≤ (1 + δ)η2
ℓ + (qred − (1 + δ))

∑

T ∈Mℓ

ηℓ(T )2 + Cest‖Uℓ+1 − Uℓ‖2
X ,
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where we used qred − (1 + δ) < 0 and Mℓ ⊆ Tℓ \ Tℓ+1. Finally, we use Dörfler marking
−∑

T ∈Mℓ
ηℓ(T )2 ≤ −θη2

ℓ to conclude

ηℓ+1 ≤ (1 + δ)η2
ℓ + (qred − (1 + δ))θη2

ℓ + Cest‖Uℓ+1 − Uℓ‖2
X

≤
(
(1 + δ) + θ(qred − (1 + δ))

)
η2

ℓ + Cest‖Uℓ+1 − Uℓ‖2
X .

We choose δ > 0 sufficiently small, such that 0 < qest := (1 + δ) + θ(qred − (1 + δ)) =
1 − θ(1 − qred) + (1 + θ)δ < 1 holds. �

We shall see in the next corollary that in certain situations estimator reduction already
proves convergence Uℓ → u.

Corollary 5. Let a(·, ·) be an elliptic bilinear form on X and assume f ∈ X ∗. Let u ∈ X
and UT ∈ XT for all T ∈ T be the solutions of

a(u, v) = f(v) for all v ∈ X ,

a(UT , V ) = f(V ) for all V ∈ XT .

Moreover, suppose nestedness Xℓ ⊆ Xℓ+1 for all ℓ ∈ N. Then, the estimator reduction
from Lemma 4 implies estimator convergence limℓ ηℓ = 0. Reliability (A4) even yields
convergence limℓ ‖u − Uℓ‖X = 0.

Proof. We are in the frame of the Lax-Milgram lemma. Hence, each closed subspace
X∞ ⊆ X admits a unique Galerkin solution U∞ ∈ X∞ of

a(U∞, V ) = f(V ) for all V ∈ X∞.

Moreover, the Céa lemma holds

‖u − U∞‖X ≤ CCea inf
V ∈X∞

‖u − V ‖.

We define X∞ :=
⋃

ℓ∈N Xℓ ⊆ X . Since Xℓ ⊆ X∞, there holds

a(U∞, V ) = a(u, V ) = a(Uℓ, V ) for all V ∈ Xℓ.

This shows that Uℓ is also the unique Galerkin approximation to U∞ in Xℓ. Therefore,
the Céa lemma holds also for U∞, i.e.

‖U∞ − Uℓ‖X ≤ CCea inf
V ∈Xℓ

‖U∞ − V ‖2
X . (9)

For given ε > 0, there exists ℓε ∈ N and Vε ∈ Xℓε
such that ‖U∞ − Vε‖X ≤ ε by definition

of X∞. Since Vε ∈ Xℓ for all ℓ ≥ ℓε, this together with (9) implies

‖U∞ − Uℓ‖X ≤ CCeaε.

Overall, we thus get limℓ ‖U∞ − Uℓ‖X = 0.
With the notation αℓ := Cest‖Uℓ+1−Uℓ‖2

X , the estimator reduction from Lemma 4 reads
η2

ℓ+1 ≤ qestη
2
ℓ +αℓ for all ℓ ∈ N. We just proved that Uℓ converges and thus is in particular

a Cauchy sequence. This implies αℓ → 0 as ℓ → ∞. If we can show supℓ∈N η2
ℓ < ∞ which

is proved below, we get

lim sup
ℓ∈N

η2
ℓ+1 ≤ qest lim sup

ℓ∈N

η2
ℓ + lim sup

ℓ∈N

αℓ = lim sup
ℓ∈N

η2
ℓ+1.

Since 0 < qest < 1, this shows

0 ≤ lim inf
ℓ∈N

η2
ℓ ≤ lim sup

ℓ∈N

η2
ℓ = 0,

and hence limℓ→∞ η2
ℓ = 0. With reliability (A4), this also yields convergence

lim
ℓ→∞

‖u − Uℓ‖2
X ≤ Crel lim

ℓ→∞
η2

ℓ = 0.
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Altogether, it only remains to show supℓ∈N η2
ℓ < ∞. By induction on ℓ, we see

η2
ℓ ≤ qℓ

estη
2
0 +

ℓ∑

k=1

qℓ−k
est αk−1 for all ℓ ∈ N0. (10)

For ℓ = 0, the statement reads η2
0 = η2

0 and is obviously true. For ℓ > 0, we have by use
of the estimator reduction (6) and the induction hypothesis

η2
ℓ ≤ qestη

2
ℓ−1 + αℓ−1 ≤ qℓ

estη
2
0 +

ℓ−1∑

k=1

qℓ−k
est αk−1 + αℓ−1.

This proves (10), and we conclude

η2
ℓ ≤ qℓ

estη
2
0 + (1 − qest)

−1 sup
k∈N

αk < ∞

and hence supℓ∈N η2
ℓ < ∞. �

Lemma 6. The following statements are pairwise equivalent:

(i) summability:

∞∑

k=ℓ+1

η2
k ≤ C1η2

ℓ for all ℓ ∈ N0, (11)

(ii) inverse summability: for all s > 0 there exists C2 = C2(s) > 0 such that

ℓ−1∑

k=0

η
−1/s
k ≤ C2η

−1/s
ℓ for all ℓ ∈ N, (12)

(iii) R-linear convergence: there exists 0 < q3 < 1 such that

η2
ℓ+k ≤ C3q

k
3 η2

ℓ for all ℓ, k ∈ N0. (13)

Proof. (iii) =⇒ (i): We start with R-linear convergence (13). By use of the convergence
of the geometric series, we see

∞∑

k=ℓ+1

η2
k =

∞∑

k=1

η2
ℓ+k ≤ C3

( ∞∑

k=1

qk
3

)
η2

ℓ ≤ C1η
2
ℓ ,

where C1 = C3
∑∞

k=1 qk
3 < ∞. This shows (i).

(iii) =⇒ (ii): From (13), we get

η
−1/s
ℓ ≤ C

−1/(2s)
3 q

k/(2s)
3 η

−1/s
ℓ+k for all k, ℓ ∈ N0 and all s > 0,

and hence

η
−1/s
k ≤ C

−1/(2s)
3 q

(ℓ−k)/(2s)
3 η

−1/s
ℓ for all k, ℓ ∈ N with ℓ ≥ k and all s > 0.

This proves

ℓ−1∑

k=0

η
−1/s
k ≤ C

−1/(2s)
3

( ℓ−1∑

k=0

q
(ℓ−k)/(2s)
3

)
η

−1/s
ℓ ≤ C2η

−1/s
ℓ ,

where C
−1/(2s)
3

∑ℓ−1
k=0 q

(ℓ−k)/(2s)
3 ≤ C2 := C

−1/(2s)
3

∑∞
j=1 q

j/(2s)
3 < ∞. This shows (ii).

(i) =⇒ (iii): We assume summability (11). There holds

(1 + C−1
1 )

∞∑

k=ℓ+1

η2
k ≤

∞∑

k=ℓ+1

η2
k + η2

ℓ =
∞∑

k=ℓ

η2
k.
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With q3 := (1 + C−1
1 )−1, we see

∞∑

k=ℓ+1

η2
k ≤ q3

∞∑

k=ℓ

η2
k.

By induction on j, this yields

η2
ℓ+j ≤

∞∑

k=ℓ+j

η2
k ≤ qj

3

∞∑

k=ℓ

η2
k = qj

3

( ∑

k=ℓ+1

η2
k + η2

ℓ

)
≤ qj

3(C1 + 1)η2
ℓ .

This proves (iii) with C3 = C1 + 1.
(ii) =⇒ (iii): We assume (12). Basically, we repeat the arguments of the previous

step. There holds

(1 + C−1
2 )

ℓ−1∑

k=0

η
−1/s
k ≤

ℓ−1∑

k=0

η
−1/s
k + η

−1/s
ℓ =

ℓ∑

k=0

η
−1/s
k .

With q̃3 := (1 + C−1
2 )−1, we see

ℓ−1∑

k=0

η
−1/s
k ≤ q̃3

ℓ∑

k=0

η
−1/s
k .

By induction, we obtain

η
−1/s
ℓ ≤

ℓ∑

k=0

η
−1/s
k ≤ q̃ j

3

ℓ+j∑

k=0

η
−1/s
k = q̃ j

3

( ℓ+j−1∑

k=0

η
−1/s
k + η

−1/s
ℓ+j

)
≤ q̃ j

3 (C2 + 1)η
−1/s
ℓ+j .

Taking the equation to the power of −2s, we end up with

η2
ℓ+j ≤ (C2 + 1)2sq̃ 2sj

3 η2
ℓ .

This shows (iii) with q3 = q̃ 2s
3 and C3 = (C2 + 1)2s. �

With the collected ingredients, we are able to prove the first convergence result, which
actually contains any information about the speed of convergence. The following propo-
sition contains also the result of Theorem 3.

Proposition 7. There hold the following statements:

(i) Result of Theorem 3: The estimator reduction (6), reliability (A4), and general
quasi-orthogonality (A3) imply R-linear convergence

η2
ℓ+k ≤ Cconvqk

convη2
ℓ for all ℓ, k ∈ N. (14)

(ii) Conversely, reliability (A4) and R-linear convergence (14) imply general quasi-
orthogonality (A3) with qorth = 0.

Proof of (ii). We use (11) and reliability (A4)

N∑

k=ℓ

‖Uk+1 − Uk‖2
X ≤ 2

N∑

k=ℓ

(
‖u − Uk+1‖2

X + ‖u − Uk‖2
X

)

≤ 4
N+1∑

k=ℓ

‖u − Uk‖2
X

≤ 4Crel

N+1∑

k=ℓ

η2
k ≤ 4Crel(1 + C1)η

2
ℓ .

This proves general quasi-orthogonality (A3) with Corth = 4Crel(1+C1) and qorth = 0. �
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Proof of (i). We prove (11) and use Lemma 6 to obtain (14). With the estimator reduc-
tion (6) and reliability (A4), we get

N∑

k=ℓ+1

η2
k ≤

N∑

k=ℓ+1

(
qestη

2
k−1 + Cest‖Uk − Uk−1‖2

X

)

≤
N∑

k=ℓ+1

(
(qest + δ)η2

k−1 + Cest

(
‖Uk − Uk−1‖2

X − δC−1
est η2

k−1

))

≤
N∑

k=ℓ+1

(
(qest + δ)η2

k−1 + Cest

(
‖Uk − Uk−1‖2

X − δC−1
est C−2

rel ‖u − Uk−1‖2
X

))
.

Next, we choose sufficiently small δ < 1−qest and sufficiently small ε ≤ δC−1
est C−2

rel . Hence,
we may use the general quasi-orthogonality (A3) and obtain

N∑

k=ℓ+1

η2
k ≤ (qest + δ)

N∑

k=ℓ+1

η2
k−1 + CestCorth(ε)η2

ℓ .

We rearrange the equation as

(1 − qorth − δ)
N∑

k=ℓ+1

η2
k ≤ (qest + δ)η2

ℓ + CestCorth(ε)η2
ℓ .

This proves (11) with C1 = (qest + δ + CestCorth(ε))/(1 − qorth − δ). Finally, Lemma 6
implies (14). �

So far, we introduced four axioms (A1)–(A4) and proved

(A1)–(A4) =⇒ R-linear convergence (14).

Recall that the proof is split into two major substeps:

(1) Stability (A1) and reduction (A2) imply the estimator reduction (6).
(2) Estimator reduction (6) combined with the general quasi-orthogonality (A3) and

reliability (A4) imply R-linear convergence (14).

Note that the assumptions on the mesh-refinement have not been used, yet. Our next
goal will be to improve on the R-linear convergence and show quasi-optimal convergence
rates.

2.5. Optimal convergence rates for the estimator. The fundamental question of
the section is if one can prove that the estimator η(·) converges to zero with algebraic
convergence rates, i.e. if there exist constants s, C > 0 such that there holds

ηℓ ≤ C(|Tℓ|)−s for all ℓ ∈ N0. (15)

In this case, we say that ηℓ converges to zero with a rate of N−s. The question is
interesting for a reason. Given any numerical example: If we plot the error and the
estimator over the number of elements in a graph with logarithmic scaling, we observe
something like this:
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Here, the error estimator ηℓ is shown in green, whereas the error ‖u − Uℓ‖X is shown
in red. The estimate (15) formulates the fact, that the error estimator converges to zero
at least as fast as a certain line with slope −s (dashed black line in the figure above).
This has been observed in practical experiments since more than 20 years. However, first
proofs became available not before 2004.

In this frame, the natural question is:

What is the largest possible s ≥ 0 such that (15) still holds true?

To answer that, we first have to study which rate would be achievable if we could choose
the best possible meshes in each step. (Note that in (15), the meshes are chosen by the
adaptive algorithm and at this point, we do not know if they are optimal in any sense.)
To that end, we define the approximation class Bs for all s > 0:

u ∈ Bs
def.⇐⇒ ‖u‖Bs

:= ηT0
+ sup

N∈N

min
T ∈T(N)

(N sηT ) < ∞, (16)

where T(N) :=
{

T ∈ T : |T | − |T0| ≤ N
}

. If u ∈ Bs for some s > 0, the definition of Bs

implies that there exists a sequence of meshes T̃ℓ, ℓ ∈ N and a constant C̃ > 0 such that

η
T̃ℓ

≤ C̃(|T̃ℓ| − |T0|)−s for all ℓ ∈ N0. (17)

Note that we cannot compute T̃ℓ and that we do not even know if T̃ℓ+1 is a refinement of
Tℓ.

Definition 8. The adaptive algorithm is optimal if for all s > 0, there exists a constant
Copt > 0 such that there holds

u ∈ Bs ⇐⇒ ηℓ ≤ Copt(|Tℓ| − |T0|)−s for all ℓ ∈ N. (18)

Note carefully the difference to the definition of Bs in (16) and the interpretation (17).
Here, we want the meshes Tℓ generated by the adaptive algorithm to reveal a certain
convergence rate, whereas in (17), theoretically chosen optimal meshes T̃ℓ show the con-
vergence rate.

10



Lemma 9. There holds the ⇐=-implication of (18), i.e.

ηℓ ≤ Copt(|Tℓ| − |T0|)−s for all ℓ ∈ N =⇒ u ∈ Bs (19)

for all s > 0.

Proof. Let N ≥ N0 := |T1| − |T0|. For each N ≥ N0, we choose ℓ = ℓ(N) ∈ N \ {0}
maximal such that |Tℓ| − |T0| ≤ N . Obviously, there holds |Tℓ+1| − |T0| > N and since
each refined element is split into a bounded number of sons (1b), we see N < |Tℓ+1|−|T0| ≤
Csons|Tℓ| − |T0| for all ℓ ∈ N. With this, we get

ηℓN
s ≤ Copt

(
Csons|Tℓ| − |T0|

|Tℓ| − |T0|
)−s

.

This shows

sup
N∈N

min
T ∈T(N)

(N sηT ) ≤ sup
N≥N0

(N sηℓ(N)) + max
0<N≤N0

min
T ∈T(N)

(N sηT )

≤ sup
N≥N0

(
Csons|Tℓ(N)| − |T0|

|Tℓ(N)| − |T0|
)−s

+ max
0<N≤N0

min
T ∈T(N)

(N sηT ) < ∞.

The boundedness holds since the second term is the maximum of a finite set and

sup
N≥N0

(
Csons|Tℓ(N)| − |T0|

|Tℓ(N)| − |T0|
)−s

≤ C−s
sons +

(
(Csons − 1)|T0|

|T1| − |T0|
)−s

.

This shows u ∈ Bs. �

To prove the =⇒-implication of (18), we have to work harder. The concept of proof goes
back to Stevenson (2007) [Ste07] and, it has been simplified by Cascon-Kreuzer-

Nochetto-Siebert (2008) [CKNS08]. They considered a so-called total-error quantity
for the definition of the approximation class. The drawback of this approach is, that it
is well-designed for a particular model problem, but rather hard to generalize. We fol-
low the equivalent approach of Aurada-Feischl-Kemetmüller-Page-Praetorius

(2013) [AFK+13] which works with the estimator only.
Either of the approaches needs an additional axiom for the error estimator.

(A5) Discrete reliability: For all ε > 0, there exist constants Cdrel(ε), Cref(ε) > 0

such that for all refinements T̂ ∈ T of T ∈ T there exists a subset R(ε; T , T̂ ) ⊆ T
with

‖U
T̂

− UT ‖2
X ≤ εηT + Cdrel(ε)2

∑

T ∈R(ε;T ,T̂ )

ηT (T )2.

as well as

T \ T̂ ⊆ R(ε; T , T̂ ) and |R(ε; T , T̂ )| ≤ Cref(ε)|T \ T̂ |. (20)

Remark. Basically, (20) states that R(ε; T , T̂ ) is close to the set of refined elements

T \ T̂ . In practical examples R(ε; T , T̂ ) is T \ T̂ plus possibly a certain fixed number
of element layers. In the figure below, we show a typical example. The set of refined
elements is marked in green, whereas the set R(ε, T , T̂ ) is the union of the elements in
red and green. The number of extra layers may depend on ε.

11



In this example, |R(ε; T , T̂ )| seems to be much larger than |T \ T̂ |. However, γ-shape
regularity guarantees that the element layers have essentially the same number of elements
as |T \ T̂ |.

The formulation with ε = 0 goes back to [Ste07] whereas the generalization (A5) is
motivated from [BDK12] and firstly introduced in [CFPP14]. �

We start with a simple observation

Lemma 10. Discrete reliability (A5) implies reliability (A4) with Crel = infε>0(ε +
Cdrel(ε)2)1/2.

Proof. Assumption 2 states that for all T ∈ T and for all δ > 0 exists a refinement T̂ ∈ T

of T such that

‖u − U
T̂

‖X ≤ δ.

For given T ∈ T and δ > 0 choose T̂ ∈ T as above. Then, by use of discrete reliabil-
ity (A5)

‖u − UT ‖X ≤ ‖u − U
T̂

‖X + ‖U
T̂

− UT ‖X

≤ δ +
(

εη2
T + Cdrel(ε)2

∑

T ∈R(ε;T ,T̂ )

ηT (T )2
)1/2

≤ δ +
(

εη2
T + Cdrel(ε)2

∑

T ∈T

ηT (T )2
)1/2

.

Since δ, ε > 0 are arbitrary, we get

‖u − UT ‖X ≤ inf
ε>0

(ε + Cdrel(ε)2)1/2ηT .

This concludes the proof. �

The next proposition can be interpreted as follows: So far, we have seen that Dörfler
marking in the adaptive algorithm implies R-linear convergence (14) of η(·). The next
proposition shows that if you already know that there holds R-linear convergence, Dörfler
marking holds after finitely many steps, independently of how the meshes were refined.
In other words, Dörfler marking is not only sufficient for R-linear convergence, it is in
some sense even necessary.
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Proposition 11 (Optimality of Dörfler marking). Let η(·) satisfy stability (A1) and
discrete reliability (A5). Define

θ⋆ := sup
ε>0

1 − C2
stabε

1 + C2
stabCdrel(ε)2

. (21)

Then, there holds 0 < θ⋆ ≤ 1. Moreover, for all 0 < θ0 < θ⋆ there exists 0 < q0 < 1 and
ε0 > 0 such that for all refinements T̂ ∈ T of T ∈ T the following implication is true

η2
T̂

≤ q0η2
T =⇒ θη2

T ≤
∑

R(ε0;T ,T̂ )

ηT (T )2 for all 0 < θ ≤ θ0. (22)

Proof. By definition, there holds θ⋆ < 1 and since 1 − C2
stabε > 0 for sufficiently small

ε > 0, there also holds θ⋆ > 0.
To prove (22), we work with the free parameters q0, ε0 which are fixed later. With

δ > 0 and stability (A1), the Young inequality (7) gives

η2
T =

∑

T ∈T \T̂

ηT (T )2 +
∑

T ∈T ∩T̂

ηT (T )2

≤
∑

T ∈T \T̂

ηT (T )2 + (1 + δ)
∑

T ∈T ∩T̂

η
T̂

(T )2 + (1 + δ−1)C2
stab‖U

T̂
− UT ‖2

X .

We use T \ T̂ ⊆ R(ε0; T , T̂ ) to get

η2
T ≤

∑

T ∈R(ε0;T ,T̂ )

ηT (T )2 + (1 + δ)
∑

T ∈T ∩T̂

η
T̂

(T )2 + (1 + δ−1)C2
stab‖U

T̂
− UT ‖2

X .

With η2
T̂

≤ q0η2
T , there holds

η2
T ≤

∑

T ∈R(ε0;T ,T̂ )

ηT (T )2 + (1 + δ)η2
T̂

+ (1 + δ−1)C2
stab‖U

T̂
− UT ‖2

X

≤
∑

T ∈R(ε0;T ,T̂ )

ηT (T )2 + (1 + δ)q0η2
T + (1 + δ−1)C2

stab‖U
T̂

− UT ‖2
X .

Finally, by use of discrete reliability (A5), we end up with

η2
T ≤

(
1 + (1 + δ−1)C2

stabCdrel(ε0)
2
) ∑

T ∈R(ε0;T ,T̂ )

ηT (T )2 + (1 + δ)q0η
2
T + (1 + δ−1)C2

stabε0η
2
T ,

which can be rearranged to

1 − (1 + δ−1)C2
stabε0 − (1 + δ)q0

1 + (1 + δ−1)C2
stabCdrel(ε0)2

η2
T ≤

∑

T ∈R(ε0;T ,T̂ )

ηT (T )2. (23)

For arbitrary 0 < θ0 < θ⋆, choose ε0 > 0 such that

θ0 <
1 − C2

stabε0

1 + C2
stabCdrel(ε0)2

≤ sup
ε>0

1 − C2
stabε

1 + C2
stabCdrel(ε)2

= θ⋆.

Next, choose δ > 0 sufficiently large such that

θ0 <
1 − (1 + δ−1)C2

stabε0

1 + (1 + δ−1)C2
stabCdrel(ε0)2

<
1 − C2

stabε0

1 + C2
stabCdrel(ε0)2

.

Finally, choose q0 > 0 such that

θ0 =
1 − (1 + δ)q0 − (1 + δ−1)C2

stabε0

1 + (1 + δ−1)C2
stabCdrel(ε0)2

<
1 − (1 + δ−1)C2

stabε0

1 + (1 + δ−1)C2
stabCdrel(ε0)2

.
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With this, (23) becomes

θ0η2
T ≤

∑

T ∈R(ε0;T ,T̂ )

ηT (T )2,

and the claim follows. �

The next theorem is the main result of this section.

Theorem 12 (Optimal convergence of adaptive algorithm). Let η(·) satisfy stability (A1),
reduction (A2), general quasi-orthogonality (A3), reliability (A4), and discrete reliabil-
ity (A5). Let 0 < θ < θ⋆, where θ⋆ is defined in (21). Then, it holds for all s > 0:

u ∈ Bs ⇐⇒ ηℓ ≤ Copt(|Tℓ| − |T0|)−s for all ℓ ∈ N, (24)

i.e. the adaptive algorithm is optimal in the sense of Definition 8.

Recall the previous steps of proof:

• The axioms (A1)–(A4) prove R-linear convergence (14).
• The axioms (A1) and (A5) prove the optimality of the Dörfler marking in Propo-

sition 11.

In the following, we will also employ the assumptions on the mesh-refinement to establish
a connection between convergence speed and number of refined elements.

First, we prove a quasi-monotonicity property of the error estimator. Recall that the
Céa lemma and the nestedness XT ⊆ X

T̂
for T̂ ∈ T a refinement of T ∈ T imply

‖u − U
T̂

‖X ≤ Ccea‖u − UT ‖X , which is the analogue quasi-monotonicity of the error.

Lemma 13. Let η(·) satisfy stability (A1), reduction (A2), and discrete reliability (A5).

Then, η(·) is quasi-monotone, i.e. it exists Cmon > 0 such that for all refinements T̂ ∈ T

of T ∈ T there holds

η2
T̂

≤ Cmonη2
T . (25)

Proof. Similarly to the proof of Lemma 4, we split the estimator into two parts.

η2
T̂

=
∑

T ∈T̂ \T

η
T̂

(T )2 +
∑

T ∈T̂ ∩T

η
T̂

(T )2. (26)

For the first term on the right-hand side, we employ reduction (A2) to see

∑

T ∈T̂ \T

η
T̂

(T )2 ≤ qred

∑

T ∈T \T̂

ηT (T )2 + Cred‖U
T̂

− UT ‖2
X .

For the second term on the right-hand side of (26), we use stability (A1) and Young’s
inequality (7) for δ > 0

∑

T ∈T̂ ∩T

η
T̂

(T )2 ≤ (1 + δ)
∑

T ∈T̂ ∩T

ηT (T )2 + (1 + δ−1)C2
stab‖U

T̂
− UT ‖2

X .

Plugging everything together, we see

η2
T̂

≤ (qred + (1 + δ))η2
T + (Cred + (1 + δ−1)C2

stab)‖U
T̂

− UT ‖2
X .
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Finally, we choose some ε > 0 and apply discrete reliability (A5) to estimate the last
term

η2
T̂

≤ (qred + (1 + δ) + (Cred + (1 + δ−1)C2
stab)ε)η2

T

+ (Cred + (1 + δ−1)C2
stab)Cdrel(ε)2

∑

T ∈R(ε;T ,T̂ )

ηT (T )2

≤
(
qred + (1 + δ) + (Cred + (1 + δ−1)C2

stab)(Cdrel(ε)2 + ε)
)
η2

T .

With

Cmon := inf
ε>0, δ>0

(
qred + (1 + δ) + (Cred + (1 + δ−1)C2

stab)(Cdrel(ε)2 + ε)
)

,

we prove (25). �

Lemma 14. Let η(·) satisfy stability (A1), reduction (A2), and discrete reliability (A5).
Then, for s > 0 and u ∈ Bs, there holds the following: For all 0 < θ < θ⋆, there exists
ε0 > 0 and C > 0 such that for all meshes T ∈ T there exists a refinement T̂ ∈ T of T
with

|R(ε0; T , T̂ )| ≤ C‖u‖1/s
Bs

η
−1/s
T (27a)

as well as

θη2
T ≤

∑

T ∈R(ε0;T ,T̂ )

ηT (T )2. (27b)

Proof. Without loss of generality, we may assume ‖u‖Bs
> 0. Otherwise, ηT0

≤ ‖u‖Bs
= 0

and Lemma 13 implies ηT = 0 for all T ∈ T and (27a)–(27b) hold with T̂ = T . Let
λ := C−1

monq0 with 0 < q0 < 1 defined in Proposition 11 and set ε2 := λη2
T . The quasi-

monotonicity from Lemma 13 shows

ε2 ≤ q0η
2
T0

≤ ‖u‖2
Bs

.

Step 1: The first statement we want to prove, is the following: For ε2 := λη2
T , there

exists Tε ∈ T with

ηTε
≤ ε (28a)

Tε| − |T0| ≤ 2‖u‖−1/s
Bs

ε−1/s. (28b)

Basically, this says that if we want the error estimator to be smaller than ε, we have
to pay with ε−1/s elements if we choose the optimal mesh Tε. To see this statement, let
N ∈ N be minimal with N−s‖u‖Bs

≤ ε. For N = 1, we have ‖u‖Bs
= ε and hence

N = 1 = ‖u‖1/s
Bs

ε−1/s.

For N > 1, minimality of N yields (N − 1)−s‖u‖Bs
> ε and hence

N ≤ 2(N − 1) < 2‖u‖1/s
Bs

ε−1/s.

Here, we used N ≤ 2(N − 1) which holds for all N > 1. Next, we choose Tε ∈ T(N) such
that

ηTε
= min

T ∈T(N)
ηT .

By definition of the approximation class (16) and the choice of N ∈ N

ηTε
≤ N−s‖u‖Bs

≤ ε.
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Step 2: We consider the overlay T̂ := T ⊕ Tε ∈ T (cf. (2)). Since T̂ is a refinement of
Tε, we may employ quasi-monotonicity (25) of η(·) to see

η2
T̂

≤ Cmonη2
Tε

≤ Cmonε2 = q0η2
T , (29)

by definition of ε > 0.
Step 3: Finally, we employ the assumptions on the refinement strategy. First, we use

the overlay estimate (2) as well as the result (28) from Step 1 and obtain

|T̂ | − |T | ≤ (|Tε| + |T | − |T0|) − |T | = |Tε| − |T0| ≤ 2‖u‖1/s
Bs

ε−1/s.

Second, the discrete reliability (A5) and (1a) show for all ε0 > 0

|R(ε0; T , T̂ )| ≤ Cref |T \ T̂ | ≤ Cref(|T̂ | − |T |).

Altogether, we have

|R(ε0; T , T̂ )| ≤ 2Cref‖u‖1/s
Bs

ε−1/s ≤ 2Cref‖u‖1/s
Bs

λ−1/(2s)η
−1/s
T ,

which proves (27a) with C = 2Cref‖u‖1/s
Bs

λ−1/(2s). The estimate (29) allows to apply (22).
This yields

θη2
T ≤

∑

T ∈R(ε0;T ,T̂ )

ηT (T )2

and concludes the proof. �

With all preparations made, the proof of our main theorem is peanuts.

Proof of Theorem 12. Let u ∈ Bs for some s > 0 and let ℓ ∈ N. We apply Lemma 14
to choose a refinement T̂ ∈ T of Tℓ which satisfies (27) for T = Tℓ. According to (27b),

the set R(ε0; Tℓ, T̂ ) satisfies the Dörfler marking. Since we chose Mℓ in the adaptive
algorithm to be a set of minimal cardinality to satisfy the Dörfler marking, this together
with (27a) yields

|Mℓ| ≤ |R(ε0; Tℓ, T̂ )| ≤ C‖u‖1/s
Bs

η
−1/s
Tℓ

.

With the closure estimate (3), we conclude

|Tℓ| − |T0| ≤ Cmesh

ℓ−1∑

j=0

|Mj| ≤ C‖u‖1/s
Bs

ℓ−1∑

j=0

η
−1/s
Tj

.

R-linear convergence (14) and its equivalent formulation (12) thus show

|Tℓ| − |T0| ≤ C2C‖u‖1/s
Bs

η
−1/s
ℓ .

Put differently, we have

ηℓ ≤ Copt(|Tℓ| − |T0|)−s,

where Copt := Cs
2Cs‖u‖Bs

. This proves the =⇒-implication of (24). The ⇐=-implication
has already been proved in Lemma 9. �
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2.6. Characterization of the approximation class. So far, we have characterized
optimal convergence of the estimator with the approximation class Bs from (16). On the
one hand, this is very natural, since the adaptive algorithm has no other information
than the error estimator to steer the mesh-refinement. On the other hand, however, we
are interested in optimal convergence rates of the error ‖u − Uℓ‖X instead of the error
estimator. To that end, define the approximation class As for all s > 0

u ∈ As ⇐⇒ ‖u‖As
:= ‖u − UT0

‖X + sup
N∈N

min
T ∈T(N)

(
N s‖u − UT ‖X

)
< ∞. (30)

Moreover, one could even consider the approximability of the unknown solution and define
the approximation class Ãs for all s > 0

u ∈ Ãs ⇐⇒ ‖u‖
Ãs

:= sup
N∈N

min
T ∈T(N)

min
V ∈XT

(
N s‖u − V ‖X

)
< ∞. (31)

We start with some observations which are formulated in the next lemma.

Lemma 15. There hold (i)–(iii):

(i) For all s > 0, we have As ⊆ Ãs.
(ii) Under reliability (A4), it holds Bs ⊆ As for all s > 0.
(iii) Under the Céa lemma

‖u − UT ‖X ≤ Ccea min
V ∈XT

‖u − V ‖X (32)

with Ccea > 0 independent of T ∈ T, it holds Ãs = As for all s > 0.

Proof. To prove (i), we suppose u ∈ As. With

min
V ∈XT

‖u − V ‖X ≤ ‖u − UT ‖X for all T ∈ T

we get ‖u‖
Ãs

≤ ‖u‖As
< ∞ and hence u ∈ Ãs. To prove (iii), we use the Céa lemma (32)

to show ‖u‖
Ãs

≥ C−1
cea‖u‖As

and hence Ãs ⊆ As. Finally, to see (ii), we use reliability (A4)

‖u‖As
= sup

N∈N

min
T ∈T(N)

(
N s‖u − UT ‖X

)
≤ Crel sup

N∈N

min
T ∈T(N)

(
N sηT

)
= Crel‖u‖Bs

.

This shows Bs ⊆ As and concludes the proof. �

The interesting question now is: What do we need to show As = Bs or even Ãs = Bs

for all s > 0. In other words, under which assumptions will the adaptive algorithm lead
to optimal convergence rates for the error. The answer is the final axiom:

(A6) Efficiency: There exists a constant Ceff > 0 and for all T ∈ T exists a mapping
oscT (·) : X (T ) → R≥0 such that

C−2
eff η2

T ≤ ‖u − UT ‖2
X + oscT (UT )2.

To abbreviate the notation, we write oscT = oscT (UT ).

Remark. For the Poisson model problem

−∆u = f in Ω,

we shall see that efficiency (A6) follows from inverse estimates with

oscT = ‖hT (f − fT )‖L2(Ω),

where fT ∈ Pq(T ) is a T -elementwise polynomial best-approximation of f with arbitrary
but fixed polynomial degree q ≥ 0. In this case, oscT depends only on the smoothness of
the data and measures how good the data f is resolved on a given mesh T ∈ T. A special
case is when f itself is T -elementwise polynomial. Then, we have oscT = 0. �
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Lemma 16. Suppose that η(·) satisfies efficiency (A6). Then, there holds (i)–(ii):

(i) Under reliability (A4) and oscT ≤ CoscηT for all T ∈ T, it holds

u ∈ Bs ⇐⇒ ‖u‖
Bs

:= sup
N∈N

min
T ∈T(N)

N s
(
‖u − UT ‖2

X + osc2
T

)1/2
< ∞.

(ii) Suppose that additionally the Céa lemma (32) and the stability

C−2
oscoscT (V )2 ≤ oscT (W )2 + ‖V − W‖2

X for all V, W ∈ XT and all T ∈ T (33)

hold. Then, it follows

u ∈ Bs ⇐⇒ ‖u‖
Bs

:= sup
N∈N

min
T ∈T(N)

min
V ∈XT

N s
(
‖u − V ‖2

X + oscT (V )2
)1/2

< ∞.

Proof. We start with (i): All we have to show is that ‖u‖Bs
< ∞ ⇐⇒ ‖u‖Bs

< ∞
which is particularly true, if C−1‖u‖Bs

≤ ‖u‖
Bs

≤ C‖u‖Bs
for some constant C > 0. By

assumption we have oscT ≤ CoscηT and together with reliability (A4), this yields

‖u‖
Bs

≤ (C2
osc + C2

rel)
1/2‖u‖Bs

.

Efficiency shows

‖u‖Bs
≤ Ceff‖u‖

Bs

and concludes the proof of (i). To prove (ii), we first observe

‖u‖
Bs

≤ ‖u‖
Bs

≤ (C2
osc + C2

rel)
1/2‖u‖Bs

.

To see the converse estimate, let V ∈ XT . With (33)

osc2
T ≤ C2

oscoscT (V )2 + C2
osc‖UT − V ‖2

X .

For the last term, we apply the Young inequality (7) with δ = 1 to see

osc2
T ≤ C2

oscoscT (V )2 + 2C2
osc(‖u − UT ‖2

X + ‖u − V ‖2
X ).

This together with the Céa lemma (32) shows

‖u − UT ‖2
X + osc2

T ≤ C2
oscoscT (V )2 + 3C2

osc‖u − UT ‖2
X + 2C2

osc‖u − V ‖2
X

≤ C2
oscoscT (V )2 + (3C2

oscC
2
cea + 2C2

osc)‖u − V ‖2
X .

Since V ∈ XT is arbitrary, we get with C = 3C2
oscC

2
cea + 2C2

osc

η2
T ≤ C2

eff(‖u − UT ‖2
X + osc2

T ) ≤ CeffC inf
V ∈XT

(
‖u − V ‖2

X + oscT (V )2
)

and hence ‖u‖Bs
≤ CeffC‖u‖

Bs
. �

Remark. The approximation class Bs is usually found in the literature, e.g. Stevenson
(2007), Cascon-Kreuzer-Nochetto-Siebert, and additionally θ⋆ usually hinges also on Ceff .
Our approach considers the more general approximation class Bs, and θ⋆ is independent
of Ceff. �

Next, we want to characterize the approximation class Bs in terms of the Galerkin
error only. To that end, we need to quantify the quality of the oscillation term osc(·).
We define

u ∈ Os
def.⇐⇒ ‖u‖Os

:= oscT0
+ sup

N∈N

min
T ∈T(N)

(N soscT ) < ∞. (34)
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Proposition 17. Assume reliability (A4), efficiency (A6) and quasi-monotonicity of
oscillations and error in the sense that there exists a constant Cmon > 0 such that for all
refinements T̂ ∈ T of all T ∈ T holds

osc
T̂

≤ CmonoscT , (35a)

‖u − U
T̂

‖X ≤ Cmon‖u − UT ‖X . (35b)

Then, there holds (i)–(ii).

(i) u ∈ As and u ∈ Os =⇒ u ∈ Bs

(ii) u ∈ Bs and oscT ≤ CoscηT for all T ∈ T =⇒ u ∈ Os and u ∈ As

Proof. (ii): The statement follows from the definition of the approximation classes As,Bs,Os

and efficiency (A6).
(i): Let N ∈ N be even. The definition of As and Os provides meshes Terr ∈ T(N/2)

and Tosc ∈ T(N/2) with

(N/2)s‖u − UTerr
‖X ≤ ‖u‖As

,

(N/2)soscTosc
≤ ‖u‖Os

.

Now, we consider the overlay T := Terr ⊕ Tosc and employ the overlay estimate (2) to see
|T | ≤ |Terr| + |Tosc| − |T0| and hence T ∈ T(N). With efficiency and monotonicity (35),
this implies

N2sη2
T ≤ C2

effN2s
(
‖u − UT ‖2

X + osc2
T ) (36)

≤ C2
effC2

monN2s
(
‖u − UTerr

‖2
X + osc2

Tosc
) (37)

≤ C2
effC2

mon4s(‖u‖2
As

+ ‖u‖2
Os

). (38)

Altogether, we show

‖u‖Bs
≤ ηT0

+ sup
N even

min
T ∈T(N)

N sηT + sup
N uneven

min
T ∈T(N)

N sηT

≤ ηT0
+ sup

N even
min

T ∈T(N)
N sηT + sup

N>1 uneven

(
N

N − 1

)s

min
T ∈T(N)

(N − 1)sηT + min
T ∈T(1)

ηT

≤ ηT0
+ (1 + 2s) sup

N even
min

T ∈T(N)
N sηT + min

T ∈T(1)
ηT < ∞

since the second term is bounded in (36) and the third term is a minimum over a finite
set. �

To conclude the section, we provide an overview of the optimality proof in form of a
roadmap in Figure 1.

3. Verification of the Axioms

The goal of this section is to verify the introduced axioms (A1)–(A6) for a certain
model problem.

3.1. Model problem. We consider a general second-order linear elliptic PDE in diver-
gence form

Lu := −div
(
A∇u

)
+ b · ∇u + cu = f in Ω, (39a)

u = 0 on Γ := ∂Ω. (39b)

We pose the following regularity assumptions on the coefficients. A(x) ∈ Rd×d
sym is a

symmetric matrix with A ∈ W 1,∞(Ω). The vector b ∈ Rd satisfies b ∈ L∞(Ω) and the
19



Reduction (A2)

Stability (A1)

Reliability (A4)

Discrete reliability (A5)

Quasi-orthogonality (A3)

Closure (3)

Overlay (2)Efficiency (A6)

Estimator reduction
(Lemma 4)

R-linear convergence
of η(Tℓ ; U(Tℓ)) (Proposition 7)

Convergence of η(Tℓ; U(Tℓ))

Optimal Convergence
of η(Tℓ; U(Tℓ)) (Theorem 12)

Convergence of U(Tℓ)

Optimal Convergence
of U(Tℓ) (Proposition 17)

Optimality of
Dörfler marking
(Proposition 11)

Figure 1. Map of the quasi-optimality proof.

scalar c ∈ R satisfies also c ∈ L∞(Ω). The operator L is interpreted in its weak form and
defines a bilinear form

b(u, v) := 〈Lu , v〉 =
∫

Ω
A(x)∇u(x) · ∇v(x) + b(x) · ∇u(x) v(x) + c(x)u(x) v(x) dx.

The Cauchy-Schwartz inequality shows immediately the continuity of b(·, ·). There holds
for all v, w ∈ H1(Ω)

b(v, w) ≤
(
‖A‖L∞(Ω + ‖b‖L∞(Ω) + ‖c‖L∞(Ω)

)
‖v‖H1(Ω)‖w‖H1(Ω).

Additionally, we assume ellipticity of b(·, ·) on H1
0 (Ω) in the sense

b(v, v) ≥ Cell‖v‖2
H1(Ω) for all v ∈ H1

0 (Ω). (40)

Remark. The assumption (40) can be guaranteed e.g. if c ≥ 0 and the smallest eigen-

value λ(x) ∈ R of A(x) is bounded from zero since then there holds with the Young
inequality and the Friedrich’s inequality

b(v, v) ≥
∫

Ω
λ(x)|∇v(x)|2 − |b(x)||∇v(x)| v(x) dx

≥
∫

Ω
(λ(x) − |b(x)|2/2)|∇v(x)|2 − v(x)2/2 dx

≥
(

inf
x∈Ω

(λ(x) − |b(x)|2/2) − CF(Ω)/2
)
‖∇v‖2

L2(Ω).

�

The problem fits into the framework of the Lax-Milgram lemma. We choose piecewise
polynomial ansatz spaces XT := Sp

0 (T ) for all T ∈ T and define the weighted residual
20



error estimator for all T ∈ T , all T ∈ T, and all V ∈ Sp
0 (T )

ηT (T, V )2 := |T |2/d‖f + divA∇V − b · ∇V − cV ‖2
L2(Ω) + |T |1/d‖[A∇V · n]‖2

L2(∂T ∩Ω).
(41)

The first term measures the so-called volume residual, whereas the second term measures
the so-called normal jumps.

3.2. Shape regularity.

Definition 18. A triangulation T is regular (or: conforming) if

• T is a finite set of compact simplices T ⊆ Rd

• ⋃
T ∈T T = Ω

• For all T, T ′ ∈ T with T 6= T ′ holds
– T ∩ T ′ = ∅
– T ∩ T ′ is some (d − k) dimensional hyperface for k = 1, . . . , d

∗ node for d − k = 0
∗ edge for d − k = 1
∗ face for d − k = 2
∗ etc.

Definition 19. A triangulation T is γ-shape regular (or: locally γ-quasi uniform) if T
is regular in the sense of Definition 18 and

max
T ∈T

hd
T

|T | ≤ γ (42)

with hT := diam(T ) := maxx,y∈T |x − y|, and |T | =
∫

T 1 dx, where dx denotes the surface
measure.

Example 20. Consider the mesh T := {Tε} with Tε ⊆ R2 the triangle which is defined
by the nodes (0, 0), (1, 0), (0, ε) ∈ R2. There holds

h2
Tε

|Tε|
=

1

ε/2
→ ∞ as ε → 0.

Remark. Note that each triangulation T which consists of non-degenerate simplices is
γ-shape regular, since the maximum in (42) is taken over a finite set. However, the notion
of γ-shape regularity is of importance if one considers a sequence of meshes (Tℓ)ℓ∈N. Then,
γ-shape regularity of (Tℓ)ℓ∈N ensures that the simplices to not degenerate as ℓ → ∞. �

Lemma 21. Let T denote a γ-shape regular triangulation. For T ∈ T , define the patch

ωT :=
⋃{

T ′ ∈ T : T ∩ T ′ 6= ∅
}

⊂ Rd. Then,

hT = diam(T ) ≤ diam(ωT ) ≤ C(γ)hT

and the number of elements T ′ ∈ T with T ′ ⊆ ωT is bounded by C(γ) > 0.

Proof. T.B.D. �

The result of the following lemma is that each simplex can be transformed to a reference
simplex by an affine function.

Lemma 22. Let T := conv{z0, . . . , zd}
inT denote a d-dimensional simplex and let T denote a γ-shape regular triangulation.
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Define the reference element T̂ := textconv{0, e1, . . . , ed}, where ei ∈ Rd denotes the i-th
unit vector. Define the function

ΦT : T̂ → T, ΦT (x) := z0 + Bx with B := (z1 − z0, . . . , zd − z0) ∈ R
d×d.

Then, there holds (i)–(iii)

(i) |detB| = |T |

|T̂ |
≃ |T | ≃ hd

T ,

(ii) ‖B‖F ≃ h,
(iii) ‖B−1‖F ≃ h−1,

where the hidden constants depend on γ and the dimension d only.

Proof. There holds ∂iΦT (x) = zi − z0. Hence, the Jacobian of ΦT reads DΦ = B. With
this and integration by substitution, we obtain

|T | =
∫

T
1 dx =

∫

T̂
1|detDΦT | dx = |detB|

∫

T̂
1 dx = |detB||T̂ |,

where the volume |T̂ | depends only on the dimension d. Moreover, we know that |zi−z0| ≤
hT for all i = 1, . . . , d. Therefore,

‖B‖2
F =

d∑

i=1

|zi − z0|2 ≤ dh2
T .

The proof of (iii) is rather technical for d > 2 and therefore only presented for d = 2. In
this case, we have

B−1 =

(
a b
c d

)−1

=
1

detB

(
d −b

−c a

)
,

and hence

‖B−1‖F =
1

detB
‖B‖F ≃ hT

|T | ≃ h−1
T .

�

3.3. Scaling arguments. This section consists of several technical, but very useful re-
sults. The following lemma is an implication of integration by substitution and Lemma 22.

Lemma 23 (Transformation formula). Let T̂ , T ⊆ Rd denote Lipschitz domains and let

Φ(x) := Bx + y define a mapping with regular B ∈ R
d×d, y ∈ R

d, and Φ(T̂ ) = T . Then,
for u ∈ Hm(T ), it holds

u ◦ Φ ∈ Hm(T̂ ) with ‖Dm(u ◦ Φ)‖
L2(T̂ )

≤ |detB|−1/2‖B‖m
F ‖Dmu‖L2(T ).

Proposition 24 (Poincaré estimate). Let T denote a γ-shape regular triangulation.
Given T ∈ T , let u ∈ H1(T ) with integral mean u := |T |−1

∫
T u dx. Then, there ex-

ists a constant Cpc > 0 which does not depend on T and u such that

‖u − u‖L2(T ) ≤ CpchT ‖∇u‖L2(T ). (43)

Proof. On the reference element, there holds according to the PDE lecture (Poincaré

inequality) for all û ∈ H1(T̂ )

‖û − û‖
L2(T̂ )

≤ C‖∇û‖
L2(T̂ )

.

Now, we choose û := u ◦ ΦT , where ΦT is defined in Lemma 22. There holds

u = |T |−1
∫

T
u dx|T |−1

∫

T̂
û|detDΦT | dx = |T |−1 |T |

|T̂ |

∫

T̂
û dx = û.
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Let w = u − u and ŵ = w ◦ ΦT as well as w = ŵ ◦ Φ−1
T . Note that ΦT (x) = Bx + y and

Φ−1
T is also an affine function with linear part B−1. Therefore, we may apply Lemma 23

with w and ŵ, to obtain

‖u − u‖L2(T ) = |detB−1|−1/2‖û − û‖
L2(T̂ )

≤ C|detB−1|−1/2‖∇û‖
L2(T̂ )

≤ C|detB−1|−1/2|detB|−1/2‖B‖F ‖∇u‖L2(T )

= C‖B‖F ‖∇u‖L2(T ).

With Lemma 22, we conclude the proof. �

Lemma 25. Let X denote a finite dimensional vector space with seminorms | · |1, | · |2 :
X → R, i.e. for i = 1, 2 there holds

|λ||v|i = |λv|i for all λ ∈ R and all v ∈ X ,

|v + w|i ≤ |v|i + |w|i for all v, w ∈ X .

Then, (i)–(ii) are equivalent

(i) There exists C > 0 such for all v ∈ X holds |v|1 ≤ C|v|2
(ii)

{
v ∈ X : |v|1 = 0

}
⊇
{

v ∈ X : |v|2 = 0
}

Proof. The implication (i) =⇒ (ii) is trivial. It remains to prove (ii) =⇒ (i). Let

|·| : X → R denote a seminorm and let Y ⊆ X be a subspace with Y ⊇
{
v ∈ X : |v| = 0

}
.

Then, on the factor space X /Y , define

|v + Y|X /Y := inf
y∈Y

|v + y| for all v + Y ∈ X /Y .

We will check that | · |X /Y is a norm. First, homogeneity follows since λY = Y and

|λ(v + Y)|X /Y = |λv + Y|X /Y = inf
y∈Y

|λv + y| = inf
y∈Y

|λ(v + y)| = |λ||v + Y|X /Y .

Second, we prove the triangle inequality

|v + Y + w + Y|X /Y = inf
y∈Y

|v + w + y| = inf
y1∈Y

inf
y2∈Y

|v + w + y1 + y2|

≤ inf
y1∈Y

|v + w + y1| + inf
y2∈Y

|v + w + y2|
= |v + Y|X /Y + |w + Y|X /Y .

Third, definiteness follows since Y contains the kernel of the seminorm, i.e. |v+Y|X /Y = 0
implies the existence of y ∈ Y with |v + y| = 0. This shows v + y ∈ Y and particularly
implies v ∈ Y . Therefore v + Y = Y ≡ 0 in X /Y .

We define Y :=
{

v ∈ X : |v|1 = 0
}

and obtain that | · |i,X /Y defines a norm on X /Y for

i = 1, 2. Since X /Y is finite dimensional, all norms are equivalent, and we obtain that
there exists a constant C > 0 such that for all v ∈ X

|v|1 = |v|1,X /Y ≤ C|v|2,X /Y ≤ C|v|2.
This concludes the proof. �

Remark. Suppose a triangulation T . With the previous result, we are able to prove

‖∇V ‖L2(Ω) ≤ C‖V ‖L2(Ω) for all V ∈ Sp(T ),

since the vector space X = Sp(T ) is finite dimensional and both sides of the inequality
define seminorms. However, the constant C may depend on the dimension of Sp(T ) and
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therefore depends on |T |. As a result, we cannot guarantee that C remains bounded if
|T | → ∞. To fix this issue, we will employ scaling arguments in the following. �

Proposition 26 (Inverse estimate). Suppose a γ-shape regular triangulation T , a poly-
nomial degree p ≥ 1, as well as integers m, n ∈ N with n ≤ m. Then, there exists a
constant Cie > 0 such that for all T ∈ T all α ∈ R and all V ∈ Sp(T ) holds

‖hm−n+α
T DmV ‖L2(T ) ≤ Cie‖hα

T DnV ‖L2(T ). (44)

Particularly, this implies

‖hm−n+α
T DmV ‖L2(Ω) ≤ Cie‖hα

T DnV ‖L2(Ω). (45)

The constant Cie depends only on p, m, n and γ.

Proof. First, we prove (44) on the reference element. According to Lemma 25, there holds

‖DmV̂ ‖
L2(T̂ )

≤ C‖DnV̂ ‖
L2(T̂ )

for all V̂ ∈ Sp(T̂ ).

Second, we transfer the result to T ∈ T . Let V ∈ Sp(T ) and define V̂ := V ◦ ΦT with

ΦT (x) = Bx + y from Lemma 23. We also have V = V̂ ◦ Φ−1
T . Lemma 23 states

‖DmV ‖L2(T ) = ‖Dm(V̂ ◦ Φ−1
T )‖L2(T ) ≤ |detB−1|−1/2‖B−1‖m

F ‖DmV̂ ‖
L2(T̂ )

as well as

‖DnV̂ ‖
L2(T̂ )

≤ |detB|−1/2‖B‖n
F ‖DnV ‖L2(T ).

Plugging everything together, we end up with

‖DmV ‖L2(T ) ≤ C‖B−1‖m
F ‖B‖n

F ‖DnV ‖L2(T ).

Lemma 22 shows that ‖B‖F ≃ hT and ‖B−1‖F ≃ h−1
T . We multiply by hα

T to obtain (44).
To prove (45), we sum over all elements, i.e.

‖hm−n+α
T DmV ‖2

L2(Ω) =
∑

T ∈T

‖hm−n+α
T DmV ‖2

L2(T )

≤ C2
∑

T ∈T

‖hα
T DnV ‖2

L2(T ) = ‖hα
T DnV ‖2

L2(Ω).

This concludes the proof. �

3.4. Trace inequality. We start with an auxiliary result

Lemma 27 (Trace identity). Suppose a non-degenerate simplex T = conv{z0, . . . , zd} ⊆
R

d. Let E = conv{z1, . . . , zd} denote a hyperface of T (Note that the permutation of
z0, . . . , zd does not affect T ). Then, there holds

1

|E|
∫

E
w dΓ =

1

|T |
∫

T
w dx +

1

d|T |
∫

T
(x − z0) · ∇w(x) dx for all w ∈ W 1,1(T ). (46)

Proof. Define the function f(x) := w(x)(x − z0). Then, there holds

divf(x) =
d∑

j=1

∂jfj(x) =
d∑

j=1

(
∂jw(x)(x − z0)j + w(x)

)
= ∇w(x) · (x − z0) + dw(x).

With integration by parts, we obtain from this

d
∫

T
w dx +

∫

T
(x − z0) · ∇w(x) dx =

∫

T
divf dx =

∫

∂T
f · n dΓ. (47)
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Consider the unique hyperplane H ⊆ Rd with E ⊆ H . Next, we aim to prove

(x − z0) · n = 0 for all x ∈ ∂T \ E, (48a)

(x − z0) · n = diam(z0, H) for all x ∈ E. (48b)

To see (48a), we observe that x ∈ E ′ 6= E for some hyperface of E ′ of T . Since z0 6= E, it
holds z0 ∈ E ′ and therefore x − z0 ⊥ n, since n ⊥ E. To see (48b), consider the normal
projection x0 ∈ H of z0 onto the hyperplane H along n. The vectors n and x0 − z0 are
parallel and therefore it holds (x0 − z0) · n = |n||x0 − z0| = dist(z0, H). Since x, x0 ∈ H ,
there holds x − x0 ⊥ n and thus

(x − z0) · n = (x0 − z0) · n + (x − x0) · n = dist(z0, H).

The combination of (47) and (48) shows

d
∫

T
w dx +

∫

T
(x − z0) · ∇w(x) dx =

∫

∂T
w(x)(x − z0) · n dΓ = dist(z0, H)

∫

E
w dΓ

Rearrangement of the equation shows

dist(z0, H)|E|
d|T |

1

|E|
∫

E
w dΓ =

1

|T |
∫

T
w dx +

1

d|T |
∫

T
(x − z0) · ∇w(x) dx.

By choosing w = 1, we see that C := dist(z0,H)|E|
d|T |

= 1 and prove the statement. �

Proposition 28 (Trace inequality). Suppose a non-degenerate simplex T = conv{z0, . . . , zd} ⊆
Rd. Let E = conv{z1, . . . , zd} denote a hyperface of T . Then, there holds for all
v ∈ H1(T )

‖v‖2
L2(E) ≤ |E|

|T |
(

‖v‖2
L2(T ) +

2

d
hT ‖v‖L2(T )‖∇v‖L2(T )

)
(49)

as well as

‖v − vE‖2
L2(E) ≤ ‖v − vT ‖2

L2(E) ≤
(
C2

pc +
2

d
Cpc

) |E|
|T |h

2
T ‖∇v‖2

L2(T ), (50)

where vE := |E|−1
∫

E v dΓ and vT := |T |−1
∫

T v dx.

Proof. We set w = v2 and use the trace identity (46) to obtain

1

|E|
∫

E
v2 dΓ =

1

|T |
∫

T
v2 dx +

1

d|T |
∫

T
(x − z0) · 2v∇v dx

1

|T |‖v‖2
L2(T ) +

2

d|T |hT ‖v‖L2(T )‖∇v‖L2(T ),

since |x − z0| ≤ hT . Multiplying by |E|, we prove (49). To see (50), we use the best
approximation property of the integral mean, i.e.

‖v − vE‖2
L2(E) = inf

c∈R
‖v − c‖2

L2(E) ≤ ‖v − vT ‖2
L2(E).

The trace inequality (49) then shows

‖v − vE‖2
L2(E) ≤ |E|

|T |
(

‖v − vT ‖2
L2(T ) +

2

d
hT ‖v − vT ‖L2(T )‖∇v‖L2(T )

)
.

Finally, we use the Poincaré estimate (43) to bound the L2-norms with the H1-seminorm.
This results in

‖v − vE‖2
L2(E) ≤ |E|

|T |
(

C2
pch

2
T ‖∇v‖2

L2(T ) +
2

d
h2

T Cpc‖∇v‖2
L2(T )

)
.

�
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3.5. Axiom (A1): stability. The first axiom is verified for the residual error estimator
η(·)

Proposition 29. The residual error estimator

ηT (T, V )2 := |T |2/d‖f + divA∇V − b · ∇V − cV ‖2
L2(Ω) + |T |1/d‖[A∇V · n]‖2

L2(∂T ∩Ω)

satisfies the stability axiom (A1): There exists Cstab > 0 such that for refinements T̂ ∈ T

of T ∈ T and all subsets of non-refined elements S ⊆ T ∩ T̂ there holds

∣∣∣∣
( ∑

T ∈S

η
T̂

(T, V̂ )2
)1/2

−
( ∑

T ∈S

ηT (T, V )2
)1/2∣∣∣∣ ≤ Cstab‖V̂ − V ‖H1(Ω) (51)

for all V ∈ XT and all V̂ ∈ X
T̂

. The constant Cstab depends only on the γ-shape regularity

of T and T̂ .

Proof. First, note that there holds

ηT (T, V ) = η
T̂

(T, V ) for all T ∈ T ∩ T̂ and all V ∈ Sp(S).

Second, to abbreviate notation, define

|||V ||| :=
( ∑

T ∈S

ηT (T, V )2
)1/2

for all V ∈ Sp(S).

We may rewrite the left-hand side of (51) as ||||V |||− |||V̂ |||| and thus, by definition of ||| · |||,
we get

∣∣∣|||V ||| − |||V̂ |||
∣∣∣ =

( ∑

T ∈S

α(T )2
)1/2

,

where

α(T ) = |T |1/d‖divA∇(V − V̂ ) − b · ∇(V − V̂ ) − c(V − V̂ )‖L2(T )

+ |T |1/(2d)‖[A∇(V − V̂ ) · n]‖L2(∂T ∩Ω)

≤ |T |1/d
(

‖divA∇(V − V̂ )‖L2(Ω) +
(
‖b‖L∞(Ω) + ‖c‖L∞(Ω)

)
‖V − V̂ ‖H1(Ω)

)

+ |T |1/(2d)‖[A∇(V − V̂ ) · n]‖L2(∂T ∩Ω)

(52)

The first term on the right-hand side is further estimated by use of the product rule and
the inverse estimate (44) with m = 2, n = 1, and α = 0

‖divA∇(V − V̂ )‖L2(Ω) ≤ ‖∇A‖L∞(Ω)‖∇(V − V̂ )‖L2(T ) + ‖A‖L∞(Ω)‖∆(V − V̂ )‖L2(Ω)

≤
(
‖∇A‖L∞(Ω) + Cieh

−1
T ‖A‖L∞(Ω)

)
‖∇(V − V̂ )‖L2(T )

The last term on the right-hand side of (52) is split further

‖[A∇(V − V̂ ) · n]‖2
L2(∂T ∩Ω) =

∑

E hyperface of ∂T ∩Ω

‖[A∇(V − V̂ ) · n]‖2
L2(E).

Each interior hyperface E ⊆ ∂T ∩ Ω is the intersection of two elements TE,1, TE,2 ∈ T
with TE,1 ∩ TE,2 = E as sketched below
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replacements

TE,1

TE,2

For each hyperface E, this leads to

‖[A∇(V − V̂ ) · n]‖L2(TE,1∩TE,2) ≤ ‖A‖L∞(Ω)

(
‖∇(V − V̂ )‖L2(∂TE,1) + ‖∇(V − V̂ )‖L2(∂TE,2)

)
.

The trace inequality (46) and the Young inequality show

‖[A∇(V − V̂ ) · n]‖2
L2(TE,1∩TE,2)

≤ ‖A‖2
L∞(Ω) max

{ |E|
|TE,1|

,
|E|

|TE,2|
}(

‖∇(V − V̂ )‖2
L2(TE,1∪TE,2)

+
2

d
max{hTE,1

, hTE,2
}‖V − V̂ ‖L2(TE,1∪TE,2)‖∇(V − V̂ )‖L2(TE,1∪TE,2)

)

≤ C‖A‖2
L∞(Ω) max{h−1

TE,1
, h−1

TE,2
}‖V − V̂ ‖2

H1(TE,1∪TE,2),

where C > 0 depends only on ‖hT ‖L∞(Ω) ≤ diam(Ω) as well as the γ-shape regularity

which ensures |E|/|T | ≃ h−1
T . Plugging this into (52), we end up with

α(T ) ≤ |T |1/d
(
‖∇A‖L∞(Ω) + Cieh

−1
T ‖A‖L∞(Ω)

)
‖∇(V − V̂ )‖L2(T )

+ |T |1/d
(
‖b‖L∞(Ω) + ‖c‖L∞(Ω)

)
‖V − V̂ ‖H1(T )

+ C1/2‖A‖L∞(Ω)|T |1/(2d)

( ∑

E hyperface of ∂T ∩Ω

max{h−1
TE,1

, h−1
TE,2

}‖V − V̂ ‖2
H1(TE,1∪TE,2)

)1/2

.

The γ-shape regularity shows |T | ≃ |TE,1| ≃ |TE,2| (see Lemma 21) and therefore, we
prove

α(T ) ≤ (C ′ + hT )‖V − V̂ ‖H1(T ),

for some constant C ′ > 0 which depends only on the γ-shape regularity of T and T̂ . We
sum over all T ∈ S to get

∣∣∣|||V ||| − |||V̂ |||
∣∣∣ ≤ (C ′ + diam(Ω))‖V − V̂ ‖H1(Ω).

�
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